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ABSTRACT

We present recent progress in nondiffracting subwavelength fields propagating in complex plasmonic nanostruc-
tures. In particular, diffraction-free localized solutions of Maxwell’s equations in a periodic wire medium are
discussed thoroughly. The Maxwell-Garnett model is used to provide analytical expressions of the electromag-
netic fields for Bessel beams directed along the cylinders axes. Large filling factors of the metallic composite
induce resonant-plasmonic spots with a size that remains far below the limit of diffraction. Some numerical
simulations based on the finite-element method support our analytical approach.

Keywords: hybrid surface waves, superlattices, plasmonics

1. INTRODUCTION

Bessel beams are wavefields traveling in free space that are characterized by a prescribed propagation constant
along a given direction and concurrently their transverse patterns are clearly localized.1 Since intensity is confined
around a characteristic axis despite of diffraction effects, soon they were coined diffraction-free beams. However,
the Bessel beamsize is unambiguously limited by diffraction inasmuch as its FWHM is greater than half the
wavelength.

Transferring such ideas to optically structured media is strikingly easy to do but still barely unexplored.2 Head
attention has been addressed to guided modes for long due to its key role in telecommunications systems. Since a
host medium cannot route a wavefield by definition, confined nondiffracting beams may be interpreted as a tight
focusing within bulk inhomogeneous media. Potential applications include femtosecond laser submicrochannel
machining and optical trapping and guiding of micro- and nano-size objects.

Not long since we theoretically confirmed that a metal-dielectric stratified medium may sustain diffraction-
free localized beams, even including losses in the materials.3, 4 In particular, the existence of Bessel plasmons
deserves special attention.5 We confirmed that grazing propagation is not sustained by canalization6 but depends
on the waveform itself. Additionally, the assistance of surface plasmons polaritons (SPPs) leads to subwavelength
beamsizes.

Here we present recent progress of our research group in nondiffracting subwavelength fields circulating in
complex plasmonic nanostructures. In particular, localized diffraction-free SPPs in a metallic wire medium are
discussed thoroughly.

2. BESSEL BEAMS IN EFFECTIVE MEDIA

Let us first consider metallic wires of radius r, made of a bulk metal with permittivity εm. We assume a periodic
squared distribution of this sort of wires in a way that a stands for the lattice period, as shown in Fig. 1.
Note that a ≥ 2r. Finally, the host medium has a dielectric constant εd. Also we assume that monochromatic
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Figure 1. Periodic array of nanowires made of a metal with dielectric constant εm, distributed in a squared lattice, and
hosted in a dielectric medium with permittivity εd. The radius of the wires is r and the lattice constant is a. Beam
propagation is driven along the wires axes, that is the z axis.

beam propagation is driven along the wires, that is the z axis. If, additionally, the transverse waveform does not
change at different xy planes, except maybe by a phase-only term depending on z, we may impose simultaneously
that ∂zH = iβH and ∂tH = −iωH, where ω = ck0 is the time-domain frequency and β is the on-axis spatial
frequency of the wavefield. For convenience, the 3D magnetic field is written asH = Ht+Hzz, where Ht includes
both transverse components and Hz consider the on-axis component. Under these conditions, Hz satisfies the
following wave equation, (

εk20 − β2 +∇2
t

)
Hz = ε

(∇tε
−1

) · (iβHt −∇tHz) . (1)

Here ∇t = x∂x+y∂y and ∇2
t = ∂2x+∂

2
y . In our system, a given wire axis is parallel to the unit vector z; therefore

we set ε(x, y) = εm in the metallic rods and ε(x, y) = εd in the host medium. As a consequence, nondiffracting
solutions of the wave equation (1) includes hybrid solutions.

We may simplify our problem by considering the effective medium approximation (EMA). Under this ap-
proach, the structured medium is modeled as an anisotropic material. The EMA gives accurate results provided
that the wavelength λ0 = 2π/k0 is significantly greater than the lattice period, λ0 � a. As a consequence, ε(x, y)
in Eq. (1) is transformed into an average constant parameter, ε⊥, which is given by

ε⊥ = εd

[
(1 + f)εm + (1− f)εd
(1 − f)εm + (1 + f)εd

]
, (2)

where the filling factor f = πr2/a2. Here we use the expression for ε⊥ from the Maxwell-Garnett theory.7

Moreover, Eq. (1) is reduced to a 2D Helmholtz equation,
(
k2t +∇2

t

)
Hz = 0, where kt =

√
ε⊥k20 − β2 provided

that ε⊥ > 0 and β <
√
ε⊥k0. This is a wave equation corresponding to nondiffracting ordinary waves propagating

in a uniaxial crystal of permittivity ε̄ = ε⊥(xx+yy)+ ε||zz. Solutions using Bessel functions come out naturally
by setting ∇2

t in a cylindrical coordinate system, that is, ∇2
t = r2∂2r + r∂r + ∂φ. Solving the Helmholtz wave

equation yields

Ho
z = exp (iβz − iωt)

kt
β

∞∑

m=−∞
Amψm(r, φ), (3)

where Am denotes a complex-valued constant, ψm = exp(imφ)Jm(ktr) and Jm is a Bessel function of the first
kind. Equation (3) gives a complete solution provided that Ho

z does no diverge at r = 0. In this case, the
transverse components of the magnetic field are written as

Ho
t = exp (iβz − iωt)

∞∑

m=−∞
Am [(iψm+1 − iψm−1)x+ (ψm+1 + ψm−1)y] . (4)
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Figure 2. (a) Schematic illustration of the anisotropic medium that substitutes the wire plasmonic crystal of Fig. 1 by
using the Maxwell-Garnett model. (b) Variation of ε⊥ and ε|| in terms of the filling factor, for silver wires hosted by
alumina at λ0 = 700 nm.

Let us point out that non-trivial solutions of Maxwell’s equations exist involving He
z = 0. These solutions

are associated with extraordinary waves, whose magnetic field may be written as

He
t = exp (iβz − iωt)

∞∑

m=−∞
Bm [(iψm+1 + iψm−1)x+ (ψm+1 − ψm−1)y] , (5)

where Bn stands for a complex-valued constant. Now the transverse spatial frequency satisfies k2t = ε||k20 −
β2ε||/ε⊥, where7

ε|| = fεm + (1− f)εd. (6)

Some general conclusions may be inferred assuming that εd < |εm| for visible and infrared frequencies.
For numerical purposes we will consider silver and alumina; the permittivities of silver and alumina at the
wavelength in vacuum λ0 = 700 nm are εsilver = −20.4 (neglecting losses) and εAl2O3 = 3.1, respectively, taken
from experimental data.8 First of all, note that 0 ≤ f ≤ fmax provided that a ≥ 2r, where fmax = π/4 ≈ 0.78.
On the other hand, ε|| > 0 for relatively low values of the filling factor,

0 ≤ f <
εd

εd − εm
. (7)

In the numerical simulation, Eq. (7) yields 0 ≤ f < 0.132. On the contrary, ε⊥ is maintained positive for higher
filling factors,

0 ≤ f <
εm + εd
εm − εd

, (8)

which results 0 ≤ f < 0.737 for our metal-dielectric composite. Fig. 2 shows that ε⊥ may take extremely-high
positive values in the interval 0.132 ≤ f < 0.737, where ε|| is negative. Note that Bessel beams driven by ordinary
waves, which are formulated in Eq. (4), cannot exist if β >

√
ε⊥k0. At the same time, the hyperbolic dispersion

of extraordinary waves leads to Bessel beams that may have a propagation constant of ideally any positive value,
0 ≤ β < ∞. However, it depends strongly on the sign of ε||. For instance, if ε|| > 0 then β <

√
ε⊥k0 for

the existence of extraordinary waves. On the contrary, solutions involving β >
√
ε⊥k0 are consistent with EMA

provided ε|| < 0 (and obviously ε⊥ > 0). Furthermore, for sufficiently high values of β we find that kt � k0, since

kt ≈ β
√|ε|||/ε⊥. Therefore the spot size of the Bessel beam clearly surpasses the limit imposed by diffraction,

leading to subwavelength nondiffracting beams.

In Fig. 3(a) we plot He
x taken from Eq. (5) and in Fig. 3(b)-(c) we represent Ho

x from Eq. (4) for Bessel beams
propagating with β = 0.8k0, that is β = 7.18 μm−1. For subfigures (a) and (b) we consider a silver-alumina
composite with a filling factor f = 0.1; in this case the Maxwell-Garnett model provides the permittivities
ε⊥ = 4.07 and ε|| = 0.75. Since both permittivities are positive, dispersion associated with extraordinary waves
is ellipsoidal. To evaluateHe

x we use B1 = −i/2 = B−1, leading to Bessel beams with transverse spatial frequency
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Figure 3. x-component of the magnetic field H for Bessel beams associated with (a) extraordinary and (b) ordinary waves
propagating in a silver-wire medium hosted by alumina (f = 0.1) for β = 0.8k0. We represent the instantaneous fields He

x

for B1 = −i/2 = B−1 and Ho
x for A1 = i/2 = −A−1 at z = 0 and t = 0. In (c) we plot Ho

x for f = 0.5. Boxes dimensions
of the contour plots are 2 μm× 2 μm.

kt = 7.12 μm−1. This fact results in a central hot spot whose FWHM is 622 nm along the x axis. On the other
hand, the amplitudes A1 = i/2 = −A−1 are set for Ho

x. In this case kt = 16.6 μm−1 leading to superresolving
hot spots of 146 nm-FWHM on the x direction. However, this effect is slightly weaker along the y axis, as shown
in Fig. 3(b). If now we increase the filling factor up to f = 0.5, but maintaining the propagation constant β
fixed, we observe that no extraordinary waves may be found. It is caused by the negative value of ε|| = −8.67.
In contrast, ordinary waves with extremely-high spatial frequency kt = 35.4 μm−1 are obtained in virtue of the
giant (and positive) value of ε⊥ = 16.2. Fig. 3(c) depicts Ho

x in this case, providing a central peak whose FWHM
is 69 nm along the x axis. This fact demonstrates that our Bessel beam clearly features a subwavelength hot
spot.

An important characteristic of the Bessel-beam waveforms is in relation with its spatial spectrum. From a
mathematical point of view, the transverse spatial spectrum of the wavefield is retrieved by applying the 2D
Fourier transform (2D-FT) to its components. By definition, the 2D-FT of a function g(x, y) is derived from
F{g}(fx, fy) =

∫∫
g(x, y) exp[−i2π(fxx+fyy)]dxdy. By means of the Bessel function closure equation9 we arrive

to the following results
F{ψm(r, φ)} = 2πk−1

t (−i)m exp(imϕ)δ(kt − 2πρ), (9)

where (fx, fy) = (ρ cosϕ, ρ sinϕ) are set in the polar coordinate system, and δ is the Dirac delta function. If
we calculate the 2D-FT to Ho

t from Eq. (4) and He
t from Eq. (5), separately, we obtain an spatial spectrum

consisting of a single ring whose radius is ρ = kt/2π. As we will see in the next section, the circular symmetry
of the transverse spatial spectrum will lead to an isofrequency curve also with circular symmetry, in contrast
to transverse spectra that can be found in arrangements studied elsewhere.10 Since the value of kt differs for
each polarization, hybrid solutions involving Ho

t and He
t simultaneously would provide a two-ring shaped spatial

spectrum.

3. LOCALIZED FULL-WAVE MODES

Here we compare the above analytical approach obtained from the EMA for the periodic squared array of
nanowires with the results of solving numerically the Maxwell’s equations. According to the Floquet-Bloch
theorem, the magnetic field of a wave mode in a 2D periodic medium with invariant spatial frequency β along
the z-axis may be written in the form

H = hkt (x, y) exp (iβz − iωt) exp (ikxx+ ikyy) , (10)

where hkt (x, y) is a field with the same periodicity of the medium and kt = (kx, ky) is the in-plane Bloch
k-vector. Nondiffracting beams propagating in wire media may be expressed as a linear combination of the
wave modes given in Eq. (10). Therefore we focus on solving the Maxwell’s equations to find all kt and hkt

provided that the propagation constant β is a parameter in our problem. For that purpose we used a commercial
finite-element package (COMSOL Multiphysics). In particular, a routine was programmed in the COMSOL RF
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Figure 4. (a) Isofrequency curve for the silver wire medium hosted by alumina (f = 0.1) for β = 0.8k0. x-component of
the magnetic field H (absolute value) for nondiffracting beams associated with (b) extraordinary waves and (c) ordinary
waves. We represent |Hx| that is the result of the Bloch-wave superposition associated with each branch of the spatial
spectrum shown in (a).

module that allows to obtain every Bloch mode for a fixed value of β. In other words, we found the complete
set of pairs (kx, ky), and the corresponding functions hkt , which satisfies Maxwell’s equations for the prefixed β.
This procedure let us to depict the spatial spectrum in the kxky-plane, which is also known as the isofrequency
curve, provided a given on-axis frequency β.

In order to verify the validity of our previous analytical results, we start by considering a silver-alumina
wired medium with f = 0.1 and metallic wires of diameter 2r = 5 nm. In this case, the lattice period is
a = 14.01 nm. With these values, λ0 � a, thus we have a configuration where the EMA is expected to give
accurate results. Using our routine based on the finite-element method (FEM) for β = 0.8k0 we obtained the
isofrequency curve shown in Fig. 4(a). In this case, the isofrequency curve has two branches approaching circles of
radius kt = 7.16 μm−1 and kt = 16.6 μm−1. The variations of the radius are very small within its corresponding
branch. Furthermore, these values of the modulus of kt are very near the values of kt predicted by the EMA
for the ordinary wave and the extraordinary wave. In view of these results we previse to obtain nondiffracting
beams with waveforms similar to those shown in Fig. 3(a) and (b).

The key point lies on Eq. (9); this equation shows us the way that a complete set of plane waves have to be
superposed to generate a Bessel waveform. In the periodic wire medium, Bloch modes will play, in some sense,
the role of the plane waves in the anisotropic effective medium. Taking the results shown in Fig. 3(a), we would
obtain an equivalent waveform by superposing properly the set of Bloch modes with in-plane k-vectors lying on
the quasi-circular branch of radius kt = 7.16 μm−1. Note that this set contains an infinite number of modes. For
numerical purposes, we have selected a finite subset of modes that are evenly spaced in the angular coordinate
ϕ. In the modal superposition, the correct amplitude of each mode can be inferred from the Eqs. (4) and (9).
In the case of the extraordinary (ordinary) wave where B1 = −i/2 = B−1 (A1 = i/2 = −A−1), the amplitude is
proportional to 1− cos 2ϕ (1 + cos 2ϕ). Finally, in order to have a localized wave field around a predetermined
point (x0, y0), which is simply the focus of the nondiffracting beam, we set in-phase the x-component of every
function hkt at such point. In our numerical simulations we have set (x0, y0) = (0, 0).

In Fig. 4(b) and (c) we plot |Hx| that results from the corresponding superposition of Bloch modes. The
aspect of the fields is in a good agreement with that from our analytical approach shown in Fig. 3(a) and (b).
From Fig. 4(b) we estimate the FWHM along the x axis as 536 nm that is near 622 nm [from Fig. 3(a)]. Also,
the FWHM is 156 nm evaluated from Fig. 4(c), comparable with 146 nm [from Fig. 3(b)].

Finally, we considered an increase of the filling factor up to f = 0.5, maintaining the propagation constant
β = 0.8k0 and the diameter 2r = 5 nm. Now, the lattice period is a = 6.27 nm. From our numerical FEM
simulations, shown in Fig. 5(a), we observe that only a single ring of radius kt = 37.2 μm−1 remains, which is
in good agreement with estimations given by the EMA (kt = 35.4 μm−1). Again the variation of the radius is
small, however, it is one order of magnitude greater than that observed for f = 0.1. The FWHM of the central
hot spot measured along the x-axis is 70 nm [see Fig. 5(b)] that is close to 69 nm measured from Fig. 3(c).
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Figure 5. (a) Isofrequency curve for a metallic compound of f = 0.5. (b) Wave field |Hx| corresponding to a nondiffracting
beam of β = 0.8k0 associated with ordinary waves of the effective medium.

4. CONCLUSIONS

We demonstrate the existence of localized nondiffracting beams propagating in a metallic wire medium. The
FEM-based numerical simulations are in excellent agreement with the analytical estimations provided by the
Maxwell-Garnett model. According to this model, low-filling-factor composites may sustain hybrid Bessel beams
having two-ring shaped spatial spectra. On the contrary, high filling factors lead to a single-ring spectrum
with a radius that may surpass the limit imposed by diffraction. In particular, we have found that if ε|| < 0,
only one polarization mode associated with either the ordinary wave or extraordinary wave may exist for a given
propagation constant β. From physical grounds, this subwavelength effect is attributed to the existing hyperbolic
dispersion that is sustained by SPPs in the wires. As a result, subwavelength Bessel beams might be observed
experimentally in this sort of periodic composite.
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